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LIST OF SYMBOLS

received signal power, watts

transmitter power, watts

transmitting antenna gain in the target direction
receiving antenna gain in the target direction
bistatic radar cross-section, square meters
transmitter to target distance, meters

receiver to target distance, meters

propagation loss over the transmitter to target path
propagation loss over the receiver to target path
system loss

wavelength, meters

power density at the receiver, watts per square meter
power density at the target, watts per square meter
unit vector in the direction of the reflected ray
unit vector in the direction of the transmitted ray

distance from the target to the point of observation--may
include or exclude the receiver

unit vector normal to and cutward from the prolate spheroidal

surface

point on the prolate spheroidal surface

unit vector tangent tc the circle formed by a plane intersectin

the prolate spheroid normal to its axis.
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1.0 [INTRODUCTION

Early experimental radar systems were predominantly of the bistatic
type, where the transmitting and receiving antennas were usually separated
by a distance comparable to the target distance (1] - [2]. When the du-
plexer was developed at the Naval Research Laboratory in 1936, a means
of using the same antenna for transmitting and receiving made monostatic
(one site) radar feasible. Bistatic radar became dormant until the early
1950's, when interest revived [1]. !nterest has increased with the develop-
ment of low level cruise missiles in 1978, when the need fcr bistatic cross-
section results became apparent for missile guidance and target detection.

Bistatic radar svstems utilize two separate locations. The radar
transmitrter is found at one location, while the radar receiver is found
at another locatien. In some configurations, ti:e radar transmitter
might be located in a B-52 airplane and the radar receiver might be
located in low altitude offensive air-to-ground missiles such as the
AGM-69A. 11 other configurations, the radar transmitter would be located
on the ground to control several ground-to-air defensive missiles. In
the first example, the target could be an enemy missile silo or ground
radar system. In the second example, it would be either the attacking
offensive missiles or a B-52 guidance and control airplane. The parameters
for detection include Doppler frequency shift from the target, signal
frequency, and bistatic radar cross~section created by the target. This
study is iimited to the bistatic crnss-section of a typical target. A
prolate spheroid was selected because it resembles an air cruise missile.
The air inlets and tail fins were not included in the anagi,sic preczentad

here. Results are presented in the form of bistatic cross-sections and
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the computer program to generate additional cross-sections for prolate

spheroids with different major to minor axis ratios.

2.0 BISTATIC RADAR CROSS-SECTIONS

The purpose of this study was to formulate the bistatic radar cross-
section of a perfectly conducting prolate spheroid when the prolate
spheroid is large compared to the wavelength of the incident radiation.
There are many studies [3] ~ [7] on the monostatic backscatter from small
prolate spheroids (prolate spheroids whose size is comparable to wave-
length) and also with studies of field distributions at the boundary of
the shadow where diffraction effects must be considered, but these are not
considered here. Objects are almost always large compared to wavelength
in detection applications, and detection is seldom done near the shadow
region. In the region that we are concerned with, the geometrical theory

of optics can be applied, and can be used to generate some insight into

the bistatic cross-sectional area as a function of the spatial coordinates.

Theory:
The bistatic radar equation can be written in the following manner:
p SR U P . 2 (1)
T ounp 2L (r) by 4 2 b,
rop t

Lp(t)

where the symbols are defined in the prefix of this report. Eq. (1) is
arranged to emphasize the motivating analysis in the derivation of the
radar equation, The power density Ut reaching the target is

P*Gt
Yy = —, . (2)
Yoy fL (1)
t p
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the effective capture area of the receiving antenna is

2

(3)
RTE

9
where XA"/hn is the universal antenna constant, and the power density Ur
at the receiving site is

bap L
r’s

U = ———— . (4)
r e AZ
r

The system loss is assumed to occur only at the receiving system. Although

it actually occurs in various locations, the exact location or even its
existence do not effect the subsequent analysis. The use of Eqs. (2} and
(4) can rewrite Eq. (1) as

b v, (5)

u = 5 ¢
hnDr Lp(r)

r

and the form of oy suitable for computation is

c

o, = lmDrsz(r) Tl (6)
t

and to numerical formulation if u_ can be found when Ut is given.

Figure 1 shows the case from geometrical optics of an incoming ray,
E, being reflected from a point on a curved surface in the direction, K'.
A very important point arises here with respect to the prolate spheroid.
Since the object is convex, a one-to-one correspondence exists between
reflection points and receiving points. As such, no interference exists
between refl2ction points, and Ur can be described simply by K' and how
energy density decreases as a function of distance between the reflection

point and observation point. In other words,

s
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spread(ti') (7)
where spread(tk') is a function describing the spreading out of energy
as one travels in the k' direction.

Figure | also shows the coordinate system that is to be imposed at
each point of the prolate spheroid. The proiate spheroid is described

by the equation:

x2+y2 2
+ =1, (8)
2Z(UZ_I) 2202

which generates an outward normal unit vector at a point P = (x,y,z):

N = C(x,y,z d ;l) (9)
u

where

2
C = (x2+y2+12(u 21)2) 1/2

(10)

u

-
It is convenient to define a coordinate system at P where N defines one

a0 U M st 1 B i 5

- axis, and
- 7= u-x,0) (1)
'x2+y2 j
and

T=Nx8 (12)

define the other two. This choice of B is stimulated by the symmetry of 3

the prolate spheroid. B is tangent to any circle defined by holding z i
l constant and i< normal to M.
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it is easily seen that the incident and reflected rays, k and g

respectively, lie in a plane containing N at Plx,y,z). Without loss of
. -+ + . ->
generality we can assume that both k and k' are unit vectors, and k' can

be written

k' =k -~ 2 (R-NN. (13)

Having found the direction of the reflected energy, it is now neces-
sary to derive an explicit expression for the spread function. Figure 2
deronstrates the underlying assumptions regarding the spread function.
It is readily seen that all the power reflecting from the rectangle in

the BT plane described by the sides x? and‘yg must pass through the surface

described by the tips of the vectors t K;. Define

"R" = )\’T‘- + t]:ll - tT,:O- (14)
and

32 =8 + tiz' - kg (15)

These vectors describe the sides of the rectangle at the tips of the
tt'i and the spread function can now be defined:
spread(tfé) = lim

o 12
A+0 PO kavg

i (16)
y=0 | i .

Equation (16) is still not in a form that is amenable to implemen-
tation on a computer, but it can be made so very easily by approximating

E', by the expression

1 AR S A £






y
13
3
E

and k'

gives

K

R, =

] similarly.

= AT + ¢t

vy (B +t

(x,y,2) + AT) (18)

Substituting Eq. (17) back into Eqs. (14) and (15)

dk.
0
-37—0. (19)
dk !
0
-Er-). (20)

and substituting these into Eq. (16) we finally arrive at:

N
because it is necessary to know k'

but by examining Eq.

and

spread (tko')
dk.' dR.! dk.' dk.!
= T, TN > 0 _.-O_.. 2 0 _0_:
Ko' LN e g v g - x B) ¢ e x )]
(21)
K' RN
o
dk .
The expre ssions involved in trying to evaluate g 2re cumbersome

0 explicitly in terms of x, y, and z,

{13) we can get

- 2(K.N) %;i , (22)
W - 2(k-N) %’% . (23)
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Equation (3) gives N in terms of x, y, and z, and %; and %% can be

calculated and are given by the following:

> 2
dN u -
- LTt =7 )
P s 1 (24)
Y y ~z u2 !
- 2
dN u -1
E? = C(BX,B ,Bz 5 )
u
2 2
2 ut-1, s (25)
C [xTx+yTy+sz( u2 ) IN.
Finally, referring to Eq. (6)
2 Ur
c, = 4o, Lp(r) U: , (26)

assuming that D_ = t and that Lp(r) = ], we get

[e} = _L‘I’i-— .,
spread(tfo') (27

It will be noticed that £q. (21) for the spread function involves terms

2 . . . .
inl, tand t°. o,_ is usually examined in the limit as t»». 0o_ then
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3.0 RESULTS

Anpendix | is a listing of the program that was used to find the
bistati¢ cross-sectional area. SB is the cross-sectional area as qiven
by Eq. (28) while SIGMAB is the value given by Eq. (22), retaining the
t-‘ and taz terms in the final expression.

Appendix 2 is a graphical representation of some of the results of
this program.

Figure 3 shows the coordinate system used to orient the prolate
spheroid in space. The major axis of the prolate is the z axis. The
transmitter is located in the y, z plane which, because of the symmetry

involved, does not affect the generality of the program.

Graphs 1-4 show i% for various transmitter positions. The observation
plane i5 the y,z plane. The prolate spheroid has major axis one unit
long, and minor axis .33 units long. Ub is in square units.

Graph 5 shows Sy for a3 sphere of a radius one unit.

Graphs 6, 7, 8 show °y in varying cases when the observation plane is
not thz y,2 plane. (These are 3!l for a prolate spheroid with major to
minor axis ratio of 3:1). The okservation plane in Graph 6 contains the
z axis, but is at 45° with respect to the y axis. In Graph 7, the obser-
vation plane is the x,z plane. In Graph B, the observation plane is the x,
z plane, but rather than having the transmitter on the y axis as in Graphs
7 and 8, the transmitter is at 30° with respect to the z axis in the
y,z plane.

Graph 9 shows 7, when the major axis to minor axis ratio is changed

from 3:1 to 10:1. In all other respects, this is the same as Graph 2.

The observation distance was equal to 1000 units in all the graphs.
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It will be seen immediately that for a prolate spheroid with major

axis, 1 unit, the maximum value of o, is w. Graphs 1-4 show that this

b

maximum value in the y-z plane is at 180° minus the transmitter angle which

is exactly as expected in terms of reflections, and g2ometrical optics.

It is also interesting to note that the patterrs in Graphs 1-4 are exactly i

the same except for being rotated in space. ;
Graphs 4, 6, and 7 show another aspect oF this pattern in space. The

pattern has maximum width in the plane containin. the tra.smitter and 2 axis, - {

and bzcomes increasingly narrow as we rotate the cbservation piane away

from the y,z plane. It is to be noted that the value of o, as we approach

b

the shadow becomes undeterminate. In the x,y plane, S = n for all angles,

while in the y,z plane, approaches .42702.

Ch

Graphs 2 and 8 show the same behavior as Grapis 4,6 and 7, except that

the transmitter is now at an angle of 30° with respect to the z axis

rather than being on the y axis. Again, the pattern approaches being

infinitely thin, and is indeterminate as we approach the shadow.

Ltastly, a comparison of Graphs 2 and 9 shows the effect of increasing
the major axis to minor axis ratio. |If the prolate spheroid becomes
narrower the maximum value remains 7w, but the pattern becomes much

narrower,

L.,0 EVALUATION

The first question that must be asked is whether the results obtained
have any meaning. first, the monostatic cross-sectional area, G for
ez Jrolate spheroid with the tran.mitter on the z axis is a well-known

quantity [<; and
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o, = (29)

for a sphere, o = which is within .1% of the value found using

the program. For a prolate spheroid with majo~ axis to minor axis ratio
3:1, (u=1.05 2= .95), the program gives o, = .02702, while Eq. (29)

gives o= .02702. In fact, for ratios 3:1, 10:1, and 22:1, the agree-

ment was exact.

Second, the Crispin bistatic theorem [8] stipulates that given
transmitter and receiver directions, k and k' respectively, in the limit
of infinite distance, Sy is equal to G 3s seen from the k and K'
direction. Table 1 gives 9y and C for various transmitter and receiver
locations. (The angles listed are with respect to the z axis).

As can be seen from Table |, there is close agreement between oy
and O The small discrepancies shown in the last two entries are easily
accounted for when we consider that since the distance is not infinite,
we are not looking at the same point on the prolate spheroid when calcu-

lating o, and ¢ .
m

b
We can conclude, then, that the program is giving meaningful numbers,
and that these numbers do represent the bistatic cross-sectional area

of a prolate spheroid.

5.0 CONCLUSION

The prolate spheroid is a cconvenient target for radar studies
becauce it is convex, From a geometrical cptics peint cf view, this is
convenient because it implies that given an observation point, there is only
one point on the prolate spheroid at which reflection occurs. As such,

there is no need to account for the phase of the signal. Any surface that
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is convex at each point, and which has no two distinct points where the

|
! hmﬂihmwmw ‘mm:m

outward normal vectors are in the same direction, can be handled similarly.
Hence, the program written could very quickly be changed to handle a figure

that is ellipsoidal in all the major planes, or even a parabola of revolution

that extends to infinity in one direction. It is simply a matter of being

oo

able mathematizally to describe the surface.

when the outward normal vectors are not distinct, it is necessary
kr

to account for the e' spatial variations in both the incident and
reflected fields. This can be done, but was beyond the scope of this

study in both computer funds and time available.

Such a program would be a major step forward in the ability to find

the bistatic cross-sectional area of arbitrary surfaces in space, where
: it is not clear that the Crispin Bistatic Theorem is appropriate. This

would be an area for further study.
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.. TABLE ! §
* A COMPAR!SON OF Ob AND Om FOR THE CRISPIN BISTATIC THEOREM E
3 Transmitter Receiver o
Location Location b m
(degrees) (degrees) (units). . i
(squared) at k + k' }
30° -30° .02702 .02702 i
i 60° -60° .02702 .02702
. 30° 150° 3.126 3.126
0° 60° . 04522 .04520
3c° 90° L2648 .26464

ey or I,

(The observation point is 10C0 units away).
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(2]

(3]

(4]

(5]

(6]

(7]
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C THIS PROGRA™ CALCULATES THE BISTATIC CROSS SECTIONAL AREA OF A

- e

200

104

enl

20e

105

C PROLATE SPHEKUlO,
C SPHERCIU., U CAY NEVER BE LESS

3 C K IS 1HE VECTUR THAN
3 C RADIATION, THE AWGLE THETA [

Trdnw uME,

REAL LU, THETA,w,P(3),w),ESTKP(3)
REAL K(3),8(3),0(3),T(3),hPRI“E(3),DLN(3)
REAL DOGN(3),DLAP(3),C1(3),C2(3),DGKP(3)

REAL FL(3)/FG(3),St,01ST,SIG1AE,038PNT(3)
INTEGER I,J,M, P, INCAY,INCA?

LOGICAL TEST, RETEMN
REAL MAG, ALPHA,4ETA,KLIST

PRIinT, L = ¢
REAND(S5,2069) L
FORMAT(F10.5)

PprT' ‘U s ’
READ(S,200) U

PFINT, *THETA = °
REAN(5,200) TRETA
WRITE(03,104) L,U,THETA
FORMAT(® L = *,F8.,4," U =

Pl = ARCCS(=1,0)

THETA = PI®IHETA/1BU0.0
K(i)=o

K(2) = «f 0xSln(1nETe)
K(3) = =1,6xCIS(1HETA)

PRINT,” DISTACE = ¢
FEADL(S,201) LIsT

FORAT(® *,F1741)

PRINT, * 10CR OF ANGLE 10
READ(S,202) 1uCaY

PrRINT, * InCkx JF anGLL In
READ(S,202) 1.iCaZ
FORMAT(IZ)

RETEST=,FalLSE,

Dix 10 J=1,131,1-CAY

BETAz J=1i

BETAZ PI*RETA/130,0

DN 20 M=1,1581,14CAZ
IF(RETEST JA DM Eliel) G T
IF (" U 1) «ETEST = ,TWUE,
ALPIFA = rei

&LPhA = PIxALPHO/AG, D

3 ] C CHNVRY TAEES THE OISTALCE A~v
[»( C PCIMT DFSIREC,

CALL CUVET(LIST, Al ka0, 000
R ITE(93,165) JdhspenT

FOR-AT(® Trik urSEIValjon P

N
n

L ARD U ARL PAPAMETERS THAT DESCRIBE THE

TeFP L4, THETA = 7,F8,0)

DESRIKLS THE UIRECTION NF THE INCOMING

RET=UC™ 0 AND 90, INCLUSIVE,

<
1]

(13) *
a3y

iyo2n

At GLES, Aul

Ay URSPNT)

OTHT = 2, 3(FA

C'HVESTS THESE YO THE

Dpd™))




o ‘ TEST = ,FALSE,

L C IF THE PUINT IS Tud CLUSE Tu 1HF AxIS THAT K I8 ONn,

L C THEM THE RUUTIYES 8LOw iR,

L IF((MAG(ULSPNI) =0T (UESkAT k) ) JLE,1,0E=10) TEST = ,TRUE.
E: L es IF(TEST) GU TC 4U

C=OBRSPNT(1)a%2+UNSPNT(2) #424 (1Ixs2a] M) (ORSPNT(3) /L) Ax2 ;
IF(C.LE,L**2) TEST=,TRUE,

: IFCTEST) ARITECO3,107) - OBSPHT TIN $vALL *

107 FORMAT(® *,420)

- IFCTEST) 6O TU 20

€ THE PHROGHAM nNG4 GUES ASUUT [MPUSI'G AV NGR,T FRAME (OM THE
C SPHEROIL AT Twe PULlUT IF RPEFLECTINM, INCIDFATALLY, IT MUST FIRST
C FIND THE FPOINT OF REFLECTIUN, HEVCE, FINDKP, .
- CALL NORM(O4SPNT,C1)
CALL SUB(CY.K.,CL)
CALL NORM{CLl, )}

i 100 Cala(Unhx2al (0)/SURT((*x2=1,0)%x (i (1) %x24N(2) % w2)¢+URR2AN(T) %)
PCl)=Cen(l)

' wh P(2)=CrN(2)

P(3)=ChUx*2/(2hxg=] ) > i{3R)

CALL FlibnP(F Nyt TonPHRIVE)

; CALL SUN(UBOPAT,P,ESTSP)

! CALL NORM(ESTKP,EST<P)

: CALL ADO(HPRIVE,ESTRP,CL)

Capt. MURM(CL,NPrI 4E)

CAaLtL SUR(=PxRINE,K,71)

CALL ®URM(CL, )

CALL SUf(viFRIYE,EaTrP,E3TA1)

IF(CAGCESTAP) ,GT ol o0E=4) 6O T 10A

e L ot e e LA e il

|
:
i

40 IF(TEST) wwWITE(03,107) © 14 THE SHALO. *
IF(IEST) GU T 2@
! CALL Sud(voadriT,r,CY)
KCIST = aG(C1)

2 IF(CQT(,n) R, 0,0) TESE = TRUE,
!
)

A
z
El
=
E |
E
3
?
3

Akl

o ik

C IT 1S HECHSSAIYY T uclEuslre FEATURES NF THE CHRVATURE NF THE
C SPHEROID AT Tub PUIT CF WEFLECTIML,, Thf DERIVATIVES OF N ARE
C TAKEN I TnF n Al T OIECTIL.S, LAMGDA, AND GAMMA ARE
C DUAY CridRelnale DESCRISTES JN YwE T DIKECYIDNHNS,
CALL PERIV(Pyn,0pL™)
Call DEWIV(P,T,ipiy)
TFCLUTCLLT o) g Taugt) Call, SCL-LT(=1,0,00L0,0401)
IFCEGY (G ) el eden) Call SCLALT(=1,0,000,00G%)

.

™
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C USING DLN AND Dgr, IT IS Pu:3Slolt T CALCULATE THE DERIVATIVE OF
C KPRIME, THE VECTIIR Fridv TwE POIMT Ut THE P,S, TO THE NRBSFRVATION
€C POINT, IN THE TwQ DIAKECTINNS, A'D THEN TO FIND THE SPREAD OF THE
C RADIATION AS IT TRAVE( S ArLAY FROM Tvg PSS,
CalLL SCLULT(PIT(w,2),0LipC1)
CALL SCLMLT(OUT(OLM,Kk),uiplR)
CALL ADG(CL,C2)DLKE) !
CALL SCLMLT(=2,0,DLLP,NLKP) !
CALL SCLMLY(LUT(pAad 5% sCH) , S S
CALL SCLMYLT(LUT(DG )y sC2) }
CALL ADD(CH1,C2,064P) !
CALL AOD(CL,C2,DGxP)
CALL SCLMLT(=2,0,RGKP,0GAP)
CALL CRUSS(u,2GNP,C1)
CALL CROSS(OLAP,T,C2)
CALL pbu(Ci,c2,Cc1)
CALL SCLAT(L.0/K0181,C1,C1)
CALL SCLHLT{1,0/%x218T»+2,.,C2)
CaLL avu(Ll,Ce,Cl)
CALL CROSS(OLAP,OGrP,(C2)
C 84 IS THE BUSTATIC CHuUSSSECTIO:AL AREA IF &F IGKORE THE D AND
C O#x2 TERMS [N THE SPKRExRD ExvrESSInN,
SEZd, 0%PLeDY (1, RPRIE)/DIT(C2,5PRTSE)
IF(SE, LT,0,0) Si==l, 0%x5%
CALL AOLIR(Ci1,C2,C2)
C SIGMAR IS THE TRUE CRUSSSECTINNAL BOEA,
SIGMVALSA 021 %00l (W, kPRI E)/DOT(C2,KPRINME)
IF(SICHAB LT, 0,9) S1G-ans=1 ,N«STGIAR
ARITE (U3,142) ‘o = CaSre’ SIGMAR = *,81G"'AN
102 FURWAT(" 7,45,F10,5,411,F10,9)
eo CONMTINUE
- 10 CONTI:UE
StToP
GHD
- KEAL FUSCTIuw ~abh(4h)
REAL A(3)
MAGESLRT(A{L) *%x2+ () %340 (3)nnP)
RETURN
e
. SUBKQUTINE ke (A, o)
REAL AC3),t(3), C, taAf
CeSRRYCACI)xa2+a () xa 240 (3) %))
IF(C,LE, 1 0=z wRITE(D53,12) ¢ DIVISION BY ZERN *
12 FORMAT(?T *,pa1%)
C=1,0/C
Calll SCL-LT(Cra, i)
FETL KRN
B0

W

..wmu
T
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SIJBROUTINE FINORF (K, ,NyH, T,kPKIMF)
REAL ®K(3),M(3),9(3),T(3),~PRIVEC(3)

REAL C1(3),C2(3),MA0
Bl1)=(i~(2))
B(2)z=n(l)

B8(3)=0.0

IFCHAG(R) ,LE.1,0E=29) B(1)=1,0

CALL NUR:A(B,UQ)
CALL CRUSS(N,BcT)

CALL SCLMLT(=2,0%0UT (%, '2,4,C1)

CaLL aLN0(Kk,Cl,XPrIvE)
RETURN
END

SUBKQUYINE ADOLD(A,n,C)
REAL A(3), 8(3), C(3)
INTEGER I

Lo 10 I=t,3
C(Id)=a(l)+8(1)
CONTINUE

RETULRN

END

SUBKOUTINE SudlA,n,C)
REAL A(3),8(3),C(3)
INTEGER 1

Do 10 I=1,3
C(l)=a(l)=b(1)
CONTINUE

RETUR N

EisD

SUBRUOUTINE SCLYLT(A,B,()
REAL 4,1 (3),C(3)

INTEGFR ]

PG 19 I=1,3

C(I)=ari(l)

CONTII-UE

KRETURY

(]

KEAL FUSCTIJN DT (A,H)
REAL A(3),B(3)

INTEGER I

DuT=y

oG 10 I=1,3

CNY = DoT+a(l)*a())
CiinT LUk

rETuP

€0

vl [ ) [P—

L




[ —— PR — e

SUBHOUTINE ChuSS(A,k,C)
REAL a(3),5(3), C(3)
C(1)=a(2)*xd(3)=a(3)x3(2)
C(el=a(3)xn(1)=AC1)%ri(3)
C{3)sa(1)«h(2)=a(2)r (1)
RETURN

END

SUBRQUTINE CUNVRTI(A,5,C,0)
REAL A,R,C,D(3)

REAL P, G

LOGICAL TEST

T1EST & FabLost,

b(1)=c,0

D(2) = AxSlwn(1d)

D(3) = AxCUS(H)

IF(SINCC) *#%2 LT 1 0E=10,35D,COa8(C) (1,0, 0)RETLRK

IF(SIN(CI*xxe2 LT, 1,0E=10) TEST
IF(TESY) C(a)==awxsIV ()
JIFQIEST) D(3)==axC:iS(~)
IFCTEST) RETURN

IF(SIT () ax2 LT, 1, 0E=10) RHETOE,
Le0

IF(CUS(R)+x2, T, 1, 0E=1r) P
IF(CUS(CIan2 LT 1, 0E=10) w
IF(CUS(H)aneg ,GT, 1, 0E=~10) P
IF(CUS(CY»*»»2 ,GT 1, uE=10)
COLYISA/SHKT (1, 0¢C )2 (D)x2?
C(2)=0 (1) *uy

v(3)sr (1) P

RETURN

EnD

SUAKQUTI-HE UERIVIP,T,upvk )
REAL P(3),V(3),up0Ln ()

KEAL A(3),08(3),C(03),0(5), A0
A(LY=P(1)

A(2)Y=pP(2)
A(R)ISP(3)ra(uki2=-1,0)/1inAd
BlL)=ST(1)

e(2y=1(2)

P3)ST(3)x(UkwZa]l 0)/uxs?
calL SCLLL1 (1. N/nvalG (A) '.*i'C)
CALL SCULMLT (LT (nag),2,0)
CHLL SCLMLTIOL /b an(a)cad,n,n)
CALL Su=(C,ruyni )

RETJRY

)]

1
!
)

[ ]
>

.
L
L]
*

JIPUE,

n
n/TAN(CRH)
(/7 A(C)

!
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Graph 3: 9p for a Prolate Spheroid with the Transmitter at 60° w.r.t.
the Z Axis (major to miner axis ratic 3:1)
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